

THE KING'S SCHOOL

Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- · Write using black or blue pen
- · Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice Answer Sheet provided.
- Allow about 15 minutes for this Section.

Section II

60 marks

- Attempt Questions 11-14
- Answer in the examination booklets provided, unless otherwise instructed.
- Start a new booklet for each question.
- Allow about 1 hour 45 minutes for this Section.

Disclaimer

This is a Trial HSC Examination only. Whilst it reflects and mirrors both the format and topics of the HSC Examination designed by the NSW Board of Studies for the respective sections, there is no guarantee that the content of this exam exactly replicates the actual HSC Examination.

Section I Total marks (10) Attempt Questions 1-10 Allow about 15 minutes for this section

Use the Multiple Choice Answer Sheet provided. Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows:

- 1 An asymptote for the curve $y = x^2 \frac{3}{x^2 3} 3$ is
 - $(A) \quad y = x^2$
 - (B) $y = x^2 3$
 - $(C) \quad y = -\sqrt{3}$
 - (D) y = -3
- For the polynomial equation $3 2x + 5x^2 4x^3 = 0$, the sum of its roots, when divided by the product of its roots, would be:
 - (A) $-\frac{4}{3}$
 - (B) $\frac{5}{3}$
 - (C) $-\frac{1}{2}$
 - (D) $\frac{5}{4}$
- 3 Find $\lim_{x \to 0} \frac{3\sin 7x}{5x}$
 - (A) $\frac{21}{5}$
 - (B) 3
 - (C) $\frac{15}{7}$
 - (D) 0

$$4 \qquad \frac{d}{dx}[\cos(\ln x)] =$$

(A)
$$-\sin(\ln x)$$

(B)
$$\frac{\cos(\ln x)}{x}$$

(C)
$$\sin(\ln x)$$

(D)
$$\frac{-\sin(\ln x)}{x}$$

5 Which graph represents the curve $y = 3 \sin 2x$?

(A)

(B)

(C)

(D)

- 6 Find an approximation of the root of $e^x 3x^2 = 0$ by using Newton's Method once and starting with an approximation of x = 3.8. Answer correct to two decimal places.
 - (A) 3.74
 - (B) 3.86
 - (C) 3.38
 - (D) 4.22
- For the function $f(x) = \sin 2x \cos x$, there is a zero between x = 1 and x = 2. A reasonable approximation to this root, using the method of *Halving the Interval*, would be:
 - (A) 0.07
 - (B) 1.25
 - (C) 1.75
 - (D) 1.875
- 8 What is the smallest value possible for the expression $\sqrt{2} \cos x 3 \sin x$?
 - (A) $\sqrt{2} 3$
 - (B) $-\sqrt{5}$
 - (C) $-\sqrt{11}$
 - (D) 11
- **9** The domain for the derivative of $y = cos^{-1} 2x$ is:
 - $(A) \quad -\frac{1}{2} \le x \le \frac{1}{2}$
 - (B) $-\frac{1}{2} < x < \frac{1}{2}$
 - (C) $x < \frac{1}{2}$
 - (D) $x < \pm \frac{1}{2}$

10 We can express $\sin x$ and $\cos x$ in terms of $\tan \frac{x}{2}$, for all values of x except

(A)
$$x = \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}, \pm \frac{5\pi}{4}, \dots$$

(B)
$$x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$$

(C)
$$x = \pm \pi, \pm 3\pi, \pm 5\pi...$$

(D)
$$x = \pm 2\pi, \pm 6\pi, \pm 8\pi...$$

End of Section I

Section II

Total marks (60) **Attempt Questions 11-14** Start a new booklet for each Question Allow about 1 hour 45 minutes for this section

START A NEW BOOKLET Question 11 (15 marks)

Marks

Find the obtuse angle between the lines, to the nearest degree:

$$2x + 3y = 8$$
 and $x - 2y = -5$

2

Given that $x = 5sin\theta$ and $y = 5cos\theta + 1$, show the equation relating x and y by eliminating θ is $y^2 + x^2 - 2y - 24 = 0$

2

Solve the inequation $\frac{2x}{x^2-9} \ge 0$

3

(d) Find $\int 3x \sqrt{4-x} dx$ using the substitution u = 4-x

2

Find the value of the term independent of x in the expansion $\left(2x^3 - \frac{1}{x}\right)^{12}$ (e)

2

Evaluate $\int_{0}^{\frac{\pi}{4}} \sin x \cos^2 x \ dx$, as a surd. (f)

2

(g) ABCDE are points, in order, on a circle and $\angle DBC = \angle DAE$.

Draw a diagram to represent this information and prove that the triangle formed by the points CDE is isosceles.

2

End of Question 11

(a) Prove by induction, that

$$4^n > 1 + 3n$$
 for $n > 1$, where n is an integer.

3

(b) Sketch the graph of $y = cos^{-1}(x + 3)$

2

1

(c) (i) Prove that
$$\int_0^{\frac{\pi}{4}} \sin^2 x \, dx = \frac{\pi}{8} - \frac{1}{4}$$

(ii) Prove that
$$\frac{d}{dx}(x \sin^2 x) \equiv x \sin 2x + \sin^2 x$$

(iii) Hence, or otherwise, prove
$$\int_0^{\frac{\pi}{4}} x \sin 2x \, dx = \frac{1}{4}$$

(d) Calculate the exact volume generated by the solid formed when $y = \ln x - 1$ is rotated about the y-axis between y = 0 and y = 1.

2

(e)
$$P(x) = x^4 - 2x^3 + 5x^2 - 16x + 12$$

(i) Show that (x - 1)(x - 2) is a factor of P(x).

1

(ii) Hence find the remaining factor of P(x).

2

End of Question 12

1

3

(a) Evaluate
$$\int_0^1 \frac{1}{\sqrt{4-2x^2}} dx$$
 in exact form.

(b) Storm is making a toffee dessert. The rate at which the toffee cools is proportional to the difference between the temperature of the toffee (T) and room temperature (R).

ie,
$$\frac{dT}{dt} = -k(T - R)$$

- (i) Show that $T = R + Ae^{-kt}$, where A is a constant, is a solution of this differential equation.
- (ii) Storm notices that a 2L pot of toffee initially cools from 540° C to 100° C in 50 minutes in a room whose temperature is 20° C. Storm cannot put the toffee into the dessert until it reaches 40° C.

How much longer does Storm need to wait to be able to add the toffee and finish her dessert, to the nearest minute?

- (iii) Show, by calculation, whether it would take more or less time to create this dessert if the room temperature were $25\,^{\circ}$ C, and k were to remain the same.
- (c) A particle moves in a straight line and its position at time (t) is given by:

$$x = 4 + \frac{\sin 4t}{\sqrt{3}} - \cos 4t$$

- (i) Express $\frac{\sin 4t}{\sqrt{3}} \cos 4t$ in the form $R \sin (4t \alpha)$ where $0 < \alpha < \frac{\pi}{2}$ and R > 0.
- (ii) The particle is undergoing Simple Harmonic Motion. Show the equation for acceleration is $\ddot{x} = -16(x-4)$
- (iii) When does the particle first reach its maximum speed?

Question 13 continues on the next page

(d)

A right conical vessel, whose height is three times its radius, is inverted so that the liquid it contains escapes from its vertex at a constant rate of 12 cm³ per second.

At time t seconds, the depth of water is h cm and the radius of the surface area of the water S cm², is r cm.

At what rate is *S* decreasing when the depth of water is 4 cm?

3

End of Question 13

(a) Zanthie bought a Splat Blaster that fires paint balls at a velocity of 20 ms⁻¹. A target has been placed on a tree, with its centre 2.5 m from the ground. The base of the tree is 25 m horizontally away from Zanthie.

Zanthie holds the Splat Blaster at a height of 1.5 m and wants to hit the centre of the target with a paint ball. Assume acceleration due to gravity is given by $g = 9.8 \text{ ms}^{-2}$.

(i) The equation of horizontal motion is given by $x = 20t \cos \theta$. Derive the equations of vertical motion.

1

(ii) To avoid overhead power lines, Zanthie must fire at an angle less than 45° . At what angle should she fire the paint ball to hit the target on the tree? Give your answer to the nearest degree.

3

(b) A particle, which starts at the origin, with velocity $v = 2ms^{-1}$, has its acceleration described as $\frac{1}{1+9x^2}ms^{-2}$.

Find an expression for v^2 as a function of x.

2

(c) The chord of contact of the tangents to the parabola $x^2 = 4ay$ from an external point $A(x_1, y_1)$ passes through the point B(0, 2a).

Find the equation of the locus of the midpoint of *AB*.

2

(d) Given that $sin^{-1}x$ and $cos^{-1}x$ are acute, show that $sin(sin^{-1}x - cos^{-1}x) \equiv 2x^2 - 1$

2

Question 14 continues on the next page

(e)

The triangle ABC is inscribed in a circle, with P a point on the arc BC. Chord AC is produced to Q such that PQ is perpendicular to AC. PR is perpendicular to BC and PS is perpendicular to AB, as shown on the diagram.

(i) Prove that RCQP and BSRP are cyclic quadrilaterals.

2

(ii) Prove that S, R and Q are collinear points.

3

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_a x$, x > 0

Year 12 Trial Higher School Certificate Examination 2012, Mathematic	s Extension 1
--	---------------

Student Number

Multiple Choice Answer Sheet

Section I Total marks (10) Attempt Questions 1-10 Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

- 1 (A) (B) (C) (D)
- 2 A B C D
- 3 A B C D
- 4 A B C D
- 5 (A) (B) (C) (D)
- 6 A B C D
- 7 (A) (B) (C) (D)
- 8 A B C D
- 9 (A) (B) (C) (D)
- 10 (A) (B) (C) (D)

Student Number

THE KING'S SCHOOL

2012 Higher School Certificate **Trial Examination**

Mathematics Extension 1

Question	Algebra and Number		Differential Calculus		Functions		Geometry		Integral Calculus		Trigonometry		Total
1-10			4, 9	/ 2	1, 2, 6,	7 / 4				*******************************	3, 5, 8,	10 /4	/10
11	c, e	/5			b	/ 2	g	/2	d, f	/ 4	a	/2	/15
12	a	/3			b, e	/ 5			c, d	/ 7			/15
13			b, c(ii),	(iii), d /11					a	/ 2	c(i)	/2	/15
14			a, b	/6	c, d	/ 4	е	/5					/15
Total		/8		/19		/15		/7		/13		/8	/70

2012 Trial HSC Examination - Mathematics Extension 1 Multiple Choice Answer Sheet

Name ANSWERS

Completely fill the response oval representing the most correct answer.								
1.	A 🔿	В	c O	DO				
2.	A 🔾	В	$C \bigcirc$	DO				
3.	A 🔷	ВО	c 🔿	DO				
4.	A 🔿	ВО	$C \bigcirc$	D •				
5.	A •	ВО	$C \bigcirc$	DO				
6.	A •	ВО	$C \bigcirc$	DO				
7.	A 🔿	ВО	C 🌑	DO				
8.	A 🔿	ВО	C 🍑	D 👝 .				
9.	$A \bigcirc$	В	c	DO				

10. A O BO C DO

2012 Ext 1 THSC SOLUTIONS	- S. '
Section I	
MULTIPLE CHOICE: (leach) 1. as $x \to \infty$, $\frac{3}{x^2-3} \to 0$ $y \to x^2-3$ $y = x^2-3$ is a curved asymptote.	∴ B
Jan San Carolina Control of the Cont	
2. Sum of Roots = -1/a b 5 Product of Roots = 1/a d 3	∴ B
3. $\lim_{x\to 0} \frac{3\sin7x}{5x} = \frac{3}{5} \left(\lim_{x\to 0} \frac{\sin7x}{7x} \right) \cdot \frac{7}{5} = \frac{21}{5} \left(1 \right) = \frac{21}{5}$:. A
4. de cos (lnx) = - sin (lnx). Le (by Chain hale)	:. D
5. amplifude=3; Period = 2T=TT; Starts at O.	:. A
6. $f(x) = e^{x} - 3x^{2}$ $f(x) = e^{x} - 6x$ $f(3.8) = e^{3.8} - 3(3.8)^{2}$ $f'(3.8) = e^{3.8} - 6(3.8)$ $= 1.381184$ $= 21.90118$	
And the second s	
$z_2 = 3-8 - \frac{f(3.8)}{f(3.8)} \stackrel{?}{=} 3.8 - \frac{1.381184}{21.90118} \stackrel{?}{=} 3.7369$:- A
7. $f(i) = \sin 2 - \cos i = 0.37$ 7 1stapprox is $x = 1.5$.	
y f(1.5)= 310 3 - 05113	
$f(2) = \sin 4 - \cos 2 = -0.34$ $\frac{1}{2} = 0.07$ 1. New Interval (1.5, 2)	
:. 2nd Approx is 2 = 1.75	
NB: f(1.75) = xin 3.5 - cos1.75= -0-17 <0	c
:. Next apprex world be in interval (1.5, 1.75) anot >	
8. If JZcorx - 3 sinx = Rcos(x+x)	
then $R = \sqrt{(52)^2 + 3^2} = \sqrt{11}$: Min. value is $-\sqrt{11}$.: C
Afran 1 2 and 1 an	
9. $\frac{d}{dx} \cos^{-1} 2x = -\frac{1}{\sqrt{1-4x^2}}$:: Doman's $1-4x^2 > 0$	
(1-2x)(1+2x)>0 :	.÷ B
10. Odd multiples of TT, for x, will locate the undefined true 2,	·. C
where asymptotes would be at II, ±3	(Ao)
acoustic control of france in the control of the co	

Section II:

QUESTION ! !:

(a) $m_1 = -\frac{2}{3}$ and $m_2 = \frac{1}{2}$

METHOD 1: $tan \theta = \frac{|m_1 - m_2|}{|1 + m_1 m_2|}$ Acute $\theta = |tan^{-1}(-\frac{2}{3}) - tan^{-1}(\frac{1}{2})|$ $= \frac{-\frac{2}{3} - \frac{1}{2}}{|1 + (\frac{1}{3})(8)|}$:: Obluse $\theta = 120^{\circ}$

= 4

: Acord (7)

.: OBTUSE Q = 180-60°

= 120°

1/2

(b) $x = 5\sin\theta$ $y = 5\cos\theta + 1$ $\sin\theta = \frac{x}{5}$ $\cos\theta = \frac{y-1}{5}$

Now, $\sin^2\theta + \cos^2\theta = 1$ $\frac{x^2}{25} + \frac{(y-1)^2}{25} = 1$

 $x^{2} + y^{2} - 2y + 1 = 25$ $y^{2} + x^{2} - 2y - 24 = 0$

(439)

(2)

(c) CRITICAL POINTS X29 >0 [NB: X+±3]

X D X D X

Test points in each region (eg -4,-1,1,4)

.. Solution is

-34x40 exx>3

 $\sqrt{3}$

QUESTION 11 (continued)

(d) Let
$$I = \int 3x \sqrt{4-x} \, dx$$
 at let $u = 4-x$

$$\therefore \frac{du}{dx} = -1$$

$$\therefore dx = -du$$

$$I = -3 \int (4-u) \sqrt{u} du$$

$$= 3 \int (u-4) (u^2) du$$

$$= 3 \int \frac{3}{2} - 4 u^2 du$$

$$= 3 \left[\frac{2u^{3/2}}{5} - \frac{8u^{3/2}}{3} \right] + C$$

$$= 6 \int (4-x)^5 - 8 \sqrt{(4-x)^3} + C$$

$$= \frac{6}{5} (4-x)^2 \sqrt{4-x} - 8(4-x) \sqrt{4-x} + C$$

(e)
$$T_{F+1} = {\binom{12}{r}} {(2x^3)^{12-r}} {(-\frac{1}{x})^r}$$

= ${(-1)}^r {\binom{12}{r}} 2^{12-r} x$

$$T_{10} = (-1)^{9} {\binom{12}{9}} 2^{3} = -1760$$

(f)
$$\int \sin x \cos^2 x \, dx$$

= $-\frac{1}{3} \left[\cos^3 x \right]^{\frac{3}{4}}$
= $-\frac{1}{3} \left[\cos^3 \left(\frac{\pi}{4} \right) - \cos^3 0 \right]$
= $-\frac{1}{3} \left[\left(\frac{1}{4} \right)^3 - \left(\frac{1}{4} \right) \right]$

CD = DE (Equal chords subtending

equal L's at the circumferace,

LA = LB (Dela)).

: A CDE is isosceles

(2 equal sides, CD = DE).

QII. A:

(a) RTF: 4">1+3n Per n>1

Show treve for n=2 4²>(+3(2)) 16>7

i. It is true for n=2.

Assume 5(n) is true 12 4ⁿ-3n-1>0

If S(n) is true, prove S(u+1) is also drue.

Now S(n+1)

 $=4^{n+1}-3(n+1)-1$

 $=4(4^n)-3n-4$

 $=4(4^{n}-3n-1)+9n$

>0

Since 4 - 3n - 1 > 0, by the assumption on 9n > 0: n > 1.

: If true for n, it is also true for (n+1).

: Since frue for n=2, by induction it is true 1
for all integers n>1.

QUESTION 12 (Cont.)

(e)(i)
$$\int_{0}^{\pi} \sin^{2}x \, dx$$

= $\frac{1}{2} \int_{0}^{\pi} (1 - \cos 2x) \, dx$
= $\frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_{0}^{\pi}$
= $\frac{1}{2} \left[\frac{\pi}{4} - \frac{1}{2} \sin 2x \right]_{0}^{\pi}$
= $\frac{\pi}{8} - \frac{1}{4}$ (QED)

(ii)
$$\frac{d}{dx}(x\sin^2x)$$
 (Using the product rule)
= $\sin^2x(1) + x(2\sin x\cos x)$
= $\sin^2x + x\sin 2x$ (QED)

$$\frac{74}{1 - \int x \sin^2 x \, dx} = \left[x \sin^2 x \right]^{\frac{7}{4}} - \left(\frac{11}{8} - \frac{1}{4} \right) \quad \text{From(i)} \quad 1$$

$$= \frac{11}{4} \sin^2 \frac{11}{4} - 0 - \frac{11}{8} + \frac{1}{4}$$

$$= \frac{11}{4} \left(\frac{1}{2} \right) - \frac{11}{8} + \frac{1}{4}$$

(d)
$$V = \pi \int x^2 dy$$
 where $y = \ln x - 1$

$$\therefore e^{y+1} = x$$

$$\therefore x^2 = e^{2y+2}$$

$$V = \pi \int e^{2y+2} dy$$

$$= \pi \int e^{2y+2} dy$$

(e)(i)
$$P(1) = 1 - 2 + 5 - 16 + 12 = 0$$
 .: $(x-1)$ is a factor of $P(x)$

$$P(2) = 2^{4} - 2(2^{3}) + 5(2^{2}) - 16(2) + 12$$

$$= 16 - 16 + 20 - 32 + 12$$

$$= 0$$
 .: $(x-2)$ is a factor of $P(x)$

$$\therefore (x-1)(x-2)$$
 is a factor of $P(x)$.

(ii) Method 1 (by Inspection)

$$(x-1)(x-2) = x^2 - 3x + 2$$

$$\therefore (x^2 - 3x + 2)(ax^2 + bx + c) = x^4 - 2x^3 + 5x^2 - 16x + 12$$

$$\operatorname{coeff} \circ f x^4 \Rightarrow a = 1$$

$$\operatorname{constant} term \Rightarrow 2c = 12 \quad \therefore c = 6$$

$$\operatorname{coeff} \circ f x \Rightarrow -3c + 2b = -16$$

$$\therefore -18 + 2b = -16$$

$$\therefore b = 1$$

:. Other factor is $(x^2 + x + 6)$ [2)

(which is irreducible to linear factors, where $x \in \mathbb{R}$)

 $(x-1)(x-2) = x^{2} - 3x + 2$ $x^{2} + x + 6$ $x^{2} - 3x + 2) x^{4} - 2x^{3} + 5x^{2} - 16x + 12$ $x^{4} - 3x^{3} + 2x^{2}$ $x^{3} + 3x^{2} - 16x$ $x^{3} - 3x^{2} + 2x$ $6x^{2} - 18x + 12$ $6x^{2} - 19x + 12$

:. The other factor is (x2+x+6)

Q12. A: Q /3

F: b,e /5

I: c,d /7

Method 2 (By Polynomial Division)

(a)
$$\int_{0}^{1} \frac{1}{\sqrt{4-2x^{2}}} dx$$

$$= \int_{0}^{1} \frac{1}{\sqrt{2(2-x^{2})}} dx$$

$$= \frac{1}{\sqrt{2}} \int_{0}^{1} \frac{1}{\sqrt{2-x^{2}}} dx$$

$$= \frac{1}{\sqrt{2}} \int_{0}^{1} \frac{1}{\sqrt{2x}} dx$$

(b) (i)
$$T = R + Ae^{-kt}$$

$$\frac{dT}{dt} = -k(Ae^{-kt}) \text{ where } Ae^{-kt} = T - R$$

$$= -k(T - R) \text{ (ard)}$$

(ii)
$$t=0$$
, $T=540$, $k=20 \Rightarrow 540 = 20 + Ae^{\circ}$
 $\therefore A=520$
 $t=50$ } $\Rightarrow 100 = 20 + 520e^{-kt}$
 $T=100$ } $\Rightarrow 100 = 20 + 520e^{-50k}$
 $\frac{80}{520} = e^{-50k}$
 $-\frac{1}{50}ln(\frac{80}{520}) = k$
 $\therefore k = 0.03743604$

$$T = 20 + 520 e^{-0.037436t}$$

$$T = 40 \Rightarrow 40 = 20 + 520 e^{-0.037436t}$$

$$\frac{20}{520} = e^{-0.037436t}$$

$$t = -\frac{1}{0.037436} \ln(\frac{1}{26}) = 87$$

$$\therefore \text{ Extra time is } 87 - 50 = 37 \text{ manufes}$$

(iii)
$$40 = 25 + 515e^{-0.037436t}$$

 $t = \frac{1}{-0.037436} \ln(\frac{15}{515}) = 94 \text{ minutes}$
 $7 \text{ minutes (onger to cool}$

(c) (i)
$$\frac{1}{\sqrt{3}} \sin 4t - \cos 4t \equiv R \sin (4t - \alpha)$$

= $R \sin 4t \cos \alpha - R \cos 4t \sin \alpha$

$$R = \sqrt{\frac{1}{3} + 1}$$

$$\therefore R \cos \alpha = \frac{1}{\sqrt{3}} \text{ and } R \sin \alpha = 1$$

$$\therefore \tan \alpha = \frac{1}{\sqrt{3}} = \sqrt{3}$$

$$= \frac{2}{\sqrt{3}}$$

$$\therefore \alpha = \frac{\pi}{3}$$

(ii)
$$x = 4 + \frac{2}{\sqrt{3}} \sin(4t - \frac{\pi}{3})$$
 Rom(i)

$$\dot{x} = \frac{8}{\sqrt{3}} \cos \left(4t - \frac{\pi}{3}\right)$$

$$\dot{x} = -\frac{32}{\sqrt{3}} \sin \left(4t - \frac{\pi}{3}\right)$$

$$= -\frac{16}{\sqrt{3}} \left[\frac{2}{\sqrt{3}} \sin \left(4t - \frac{\pi}{3}\right)\right]$$

$$= -\frac{16}{\sqrt{3}} \left(x - \frac{4}{3}\right)$$
(QED)

:.
$$4 = 4 + \frac{2}{\sqrt{3}} \sin(4t - \frac{\pi}{3})$$

:. $\sin(4t - \frac{\pi}{3}) = 0$
:. $4t - \frac{\pi}{3} = 0$, Tr, 2π ,
:. First reaches max speed when

$$4t - \frac{\pi}{3} = 0$$
 $4t = \frac{\pi}{3}$
 $t = \frac{\pi}{12}$ seconds.

(d)
$$\frac{dV}{dt} = -12$$
 and $h = 3r$

$$\frac{dS}{dt} = \frac{dS}{dh} \cdot \frac{dh}{dV} \cdot \frac{dV}{dt}$$

$$= \pi \left(\frac{h}{3}\right)^{2}$$

$$= \frac{\pi}{9}h^{2}$$

$$\therefore Jh = \frac{2\pi h}{9}$$

and
$$V = \frac{1}{3}\pi r^2 h$$

= $\frac{1}{3}\pi \left(\frac{h^2}{9}\right)h$

$$= \frac{\pi h^3}{27}$$

$$\frac{dV}{dh} = \frac{\pi h^2}{9}$$

$$\frac{dh}{dV} = \frac{9}{\pi h^2}$$

Triple Chain, using h:

$$\frac{dS}{dt} = \frac{2\pi k}{9} \cdot \frac{9}{\pi h^2} \cdot (-12) \quad \text{when } h = 4$$

$$= -\frac{24}{4}$$

Max 1 if deferented will both rah.

Alternate Triple Chain: (in 1)

$$=-\frac{8}{r} \quad \text{when } r=\frac{4}{3}$$

$$= -8.3$$

(under 450, to avoid the power lines)

(b)
$$\ddot{x} = \frac{d}{dx}(\dot{z}\sigma^2) = \frac{1}{1+9x^2}$$

$$\frac{1}{2} 5^2 = \int \frac{1}{1+9x^2} dx$$

$$= \frac{1}{9} \int \frac{1}{4+x^2} dx$$

$$= \frac{1}{9} \cdot 3 + an'(3x) + C$$

$$= \frac{1}{2} \cdot 3 + an'(3x) + k$$

$$v=2$$
 = $4 = \frac{2}{3} + en^{-1}0 + k$
 $k = 4$

$$2^{2} = \frac{2}{3} \tan^{-1}(3x) + 4$$

(c) Chard of Contact is
$$xx_1 = 2a(y+y_1)$$

 $(0,2a) \Rightarrow 0 = 2a(2a+y_1)$

$$\therefore MidplofAB = \left(\frac{x_1+0}{2}, -\frac{2\alpha+2\alpha}{2}\right)$$
$$= \left(\frac{x_1}{2}, 0\right)$$

Q14. D: ab 16

I: cd /4

G: e /5

QUESTION 14 (Cont.)	13
(d) Now, $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$	
: d=sin'x and B= cos'x are complementary	andes.
$\therefore \sin X = x \text{and } \cos \beta = x$	U
$\sin \left(\sin^2 x - \cos^2 x\right)$	
$= \sin(\alpha - \beta)$ $\sqrt{1-x^2}$	
= sindcosp - cosd sinp	
$= \times \cdot \times - \left(\sqrt{1-\varkappa^2}\right)\left(\sqrt{1-\varkappa^2}\right)$	
$= x^2 - (1 - x^2)$	
$=2x^2-1$ (QEO)	(2)
	-
(e)(i) LPRC = 90° (PRLBC, data) and LPQC = 90° (PQL)	4c, data)
: LPRC+ LPQC	
= 90° + 90° = 180°	
RCQP is a cyclic good (one pair opposite L's supple	ementary).
LBSP = LBRP = 90° (perpendicular lines, data)	
and since these are equal L's, standing on att PB.	B]
BSRP is a cyclic goad (equal L's in same segment [or: L's in a semicircle]	(a)
for: L's in a semicircle	(2)
(ii) Let LQCP = x°	(A027 Alvin :
: LPRQ = LQCP = x° (L'sinsame segment on chardPQ	
Also, LABP = LQCP = x° (exterior L of Cyclic quad ABPC equal to the interior opposite 2	-)
Also, LSRB = LSPB = y° (L's in same segment, on chord SB	
: In ASBP, LSBP + LSPB = 900 (Lsum A, with	
12 x° + y° = 90° 5	1
:A+R, LSRQ	
= LORP + LSRB + LBRP	
= (x° + y°) + 90°	
= 90° +90° A	(13)
:. LSRQ is a straight L : S,R & Q are Collinear CORD) 1

14(e)(ii) (Co.t).

A "Better" Solution:

[A: Before:]

Let Lacp= 2°

:. LPRQ = LQCP = x°

(L's in same segment on chard PQ, in cink RCOP)

Also, LABP = LacP = 20

(Exterior L of Cyclic quad ABPC)

[The new bit" (no need for yo).]:

LSBP + L SRP = 180° (opp. L's of eyclic quad BSRP)

-: LSRP = 180° - x°

LSRQ = LSRP+ LPRQ

= (180°-x°)+x°

= 1800

= straight L

.. S, R and Q are collinear

--

END OF EXAMINATION

Q14. D: ab /

I: ed /4

a: e /s

